Lifetime prediction of power MOSFET based on LSTM with successive variational mode decomposition and error compensation
نویسندگان
چکیده
Accurate prediction of the remaining useful life (RUL) metal oxide semiconductor field effect transistors (MOSFETs) is key to safe and reliable operation power electronics. In this paper, we combine long short-term memory (LSTM) networks with successive variational mode decomposition (SVMD) use error compensation methods build a lifetime model, which improves performance model by reducing interaction between different sequences using sequence compensation. The results show that, compared Bayesian optimized LSTM, method has advantages high accuracy low uncertainty.
منابع مشابه
application of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولA MOSFET Power Amplifier with Error Correction*
The rapid evolution of power MOSFETs during the last few years has brought them to the point where they are now very attractive for use in audio amplifier power output stages. Important improvements include in creased voltage, current, and dissipation ratings, re duced "on" resistance, availability of complementary pairs, and greatly reduced cost. Although a 75-W MOSFET is still more expensiv...
متن کاملWillingness-to-pay Prediction Based on Empirical Mode Decomposition
Long-term prediction of customer preferences is becoming essential for effective product portfolio design in broad industrial sectors such as automotive, aerospace, consumer electronics, where typical concept-to-release times are long (24-60 months). However, nonlinear and nonstationary evolutions of customer preferences hinder accurate prediction of the futures of customer preferences. This pa...
متن کاملFault Diagnosis of On-Load Tap-Changer Based on Variational Mode Decomposition and Relevance Vector Machine
Abstract: In order to improve the intelligent diagnosis level of an on-load tap-changer’s (OLTC) mechanical condition, a feature extraction method based on variational mode decomposition (VMD) and weight divergence was proposed. The harmony search (HS) algorithm was used to optimize the parameter selection of the relevance vector machine (RVM). Firstly, the OLTC vibration signal was decomposed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Electronics Express
سال: 2023
ISSN: ['1349-2543', '1349-9467']
DOI: https://doi.org/10.1587/elex.20.20230277